

Course Syllabus

Course Code	Course Title	ECTS Credits	
MENG-314	Mechanical Measurements and Instrumentation	6	
Prerequisites	Department	Semester	
None	Engineering	Fall, spring	
Type of Course	Field	Language of Instruction	
Required	Engineering	English	
Level of Course	Lecturer(s)	Year of Study	
1 st Cycle	Dr Marios Constantinou	$3^{\rm rd}$	
Mode of Delivery	Work Placement	Corequisites	
Face-to-face	N/A	None	

Course Objectives:

The main objectives of the course are to:

- Introduce students to experimental mechanics through theoretical description of mechanical experimental measurement techniques.
- Familiarize students with experimental measurement techniques as well as with instruments utilized in experiments for measuring different mechanical properties.
- Provide students with knowledge on different methods on how to collect, analyze, and report various forms of data taken from mechanical measurements.
- Familiarize students with experimental design and analytical methods in order to extract valuable information about the performance of an experimental apparatus and take decision-actions where necessary.

Learning Outcomes:

After completion of the course students are expected to be able to:

- Perform, read and understand fundamental measurements on stress/strain, displacement, velocity, acceleration, force, pressure, heat flux, thermophysical properties of materials, fluid mechanics, etc.
- Be familiar with the use of basic instruments that take mechanical measurements on mechanical properties such as stress/strain, displacement, velocity, acceleration, force, pressure, heat flux, thermophysical properties of materials, fluid mechanics, etc.
- Evaluate measurements and experimental setups based on mathematical concepts such as probability and statistics, discrete and continuous probability distributions, test statistics,

- classified and robust test of significance, measurement uncertainty, experimental design, regression analysis, etc.
- Be able to design experimental procedures with adequate technical instruments for evaluating certain mechanical properties through the appropriate analytical tools.

Course Content:

- Measurements Overview.
- Design of Experiments.
- Probability Analysis.
- Data Correlation.
- Uncertainty, Errors, Propagation of Errors, and Tolerance.
- Electrical Signal Conditioning.
- Electrical Signal Measurement and Transmission.
- Digital Data Acquisition.
- Temperature Measurements (Thermometry, Thermoelectric Thermometry, Resistance Thermometry, Pyrometry).
- Pressure Measurements (Pressure transducers, manometers, vacuum, etc.).
- Velocity and Acceleration Measurements (Laser Doppler Velocimetry, Ultrasonic Methods, Hot Wire Anemometry).
- Force Measurements (accelerometer, torque, power measurements, etc.).
- Stress/Strain Measurements.
- Displacement Measurements.
- Vibration and acceleration measurements.
- Fluid Mechanics Measurements (Flow Measuring Devices, Measurement of Volume and Mass Flow Rate of Fluid).
- Measurements of Gas Composition, Emissivity, and Smoke.
- Measurement of Viscosity.
- Measurement of Heat Flux (Steady and Transient Heat Flux Measurement, ThemoPhysical. Properties, Thermal Conductivity, Heat Capacity and Heating Value).

Learning Activities and Teaching Methods:

Lectures, In-class examples and exercises, Laboratory work, In-class Activities, Videos.

Assessment Methods:

In-class Activities, Homework & Lab reports, Midterm Exams, Final Exam.

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Measurement and Instrumentation: Theory and Application 2 nd Edition	Alan S. Morris & Reza Langari	Elsevier	2016	9780128008843

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Fundamentals of Test Measurement Instrumentation	Keith R. Cheatle	The Intern Society of Automation (www.isa.org)	2006	9781556179143
Measurement, Instrumentation, and Sensors Handbook, 2nd ed.: Spatial, Mechanical, Thermal, and Radiation Measurement	John G. Webster, Halit Eren	CRC Press Taylor & Francis Group	2014	9781439848883