

Course Syllabus

Course Code	Course Title	ECTS Credits
MENG-280	Fluid Mechanics	6
Prerequisites	Department	Semester
MATH-191	Engineering	Spring Summer
Type of Course	Field	Language of Instruction
Required	Mechanical Engineering	English
Level of Course	Lecturer(s)	Year of Study
1 st Cycle	T.B.A	2 nd
Mode of Delivery	Work Placement	Corequisites
Face-to-face	N/A	None

Course Objectives:

The main objectives of the course are to:

- Introduce student to the subject of fluid mechanics;
- · Present the system and control volume approaches for analysing fluid behaviour;
- Explain the continuum hypothesis, viscosity, Newtonian & Non-Newtonian fluids;
- Outline the fundamentals of fluid statics, hydrostatics and floating bodies;
- Appreciate the utility of differential analysis;
- Familiarize attendees with the fundamental fluid flow equations;
- Cover fluid kinematics and dynamics;
- Express the Bernoulli equation and dimensional analysis;
- Introduce the Navier-Stokes equations;
- Introduce and explain the basic characteristics of turbulent flow and energy losses;
- · Analyze lift generation and aerodynamics;
- Elaborate on the importance of compressible and isentropic fluid flow;
- Relate fluid mechanics to real-world and research applications, including a general introduction to experimental fluid mechanics and computational fluid dynamics.

Learning Outcomes:

After completion of the course students are expected to be able to:

- Recognise the characteristics of fluids and their behaviour;
- Utilize the system and control volume fluid methods of analysing flows;
- Distinguish between different systems of dimensions;
- Appreciate the notion of viscosity, Newtonian & non-Newtonian fluids;
- Tackle basic engineering problems associated with hydrostatic forces, buoyancy, and stability of floating & submerged bodies;
- Apply the conservation of mass & continuity equations;
- Understand fluid motion;
- Characterise rotational and irrotational flows;
- Understand fluid circulation and lift-generation;
- Discern the subtleties of stream functions and the velocity potential;
- Apply the Bernoulli and energy equations to understand fluid behaviour;
- Use dimensional analysis and non-dimensionalisation;
- Appreciate the importance of Navier-Stokes equation;
- Comprehend the basic features of turbulent flow and energy losses;
- Calculate lift generation and basic aerodynamic parameters;
- Provide hands on laboratory experience through a basic laboratory experiment (e.g. hydrostatic pressure, flow in Venturi tubes, pressure & energy losses).

Course Content:

- Distinction between fluids (liquid & gases) and solids;
- System and control volume fluid methods of analyses, Lagrangian & Eulerian descriptions;
- Dimensions, units, and systems of dimensions;
- Continuum hypothesis, velocity fields, steady & unsteady flows;
- Viscosity, Newtonian & non-Newtonian fluids;
- Pressure, hydrostatic forces, buoyancy, floating & submerged bodies;
- Integral and differential analyses;
- Conservation of mass & continuity equation;
- Motion and deformation of fluid elements;
- · Fluid vorticity, rotational and irrotational flows;
- Circulation and lift-generation;
- Stream function and the velocity potential;
- Bernoulli and energy equations;
- Dimensional analysis and non-dimensionalisation;
- Euler and Navier-Stokes equations;
- Introduction to turbulent flows;
- Introduction to aerodynamic forces;
- Introduction to experimental methods.

Learning Activities and Teaching Methods:

Lectures, tutorials, in-class examples, discussion

Assessment Methods:

Mid-term and final exams, project assignment

Required Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
Y. A. Çengel and J. M. Cimbala	Fluid Mechanics: Fundamentals and Applications.	McGraw Hill, New York	2017	1 2 5 9 6 9 6 5 3 7 , 9781259696534

Recommended Textbooks / Readings:

Title	Author(s)	Publisher	Year	ISBN
White M. Frank	Fluid Mechanics, 7 th ed.	McGraw- Hill	2009	978-0-07-352934-9
Katz Joseph	Introductory Fluid Mechanics	Cambridg e University Press	2010	978-0-521-19245-3

Weekly Schedule

Week		Торіс		
1 -	Day 1	Types of fluids (liquid & gases). The Lagrangian & Eulerian descriptions for system and control volume fluid methods.		
	Day 2	Dimensions, units, and systems of dimensions for fluid mechanics. The Continuum hypothesis and velocity fields (steady & unsteady flows).		
2	Day 1	Newtonian & non-Newtonian fluids the influence of Viscosity. Pressure, hydrostatic forces, buoyancy, floating & submerged bodies.		
	Day 2	The Integral and differential types of analyses.		
3	Day 1	Conservation of mass & continuity equation. Motion and deformation of fluid elements.		
	Day 2	Fluid vorticity, rotational and irrotational flows.		
1	Day 1	Midterm		

+	Day 2	Circulation and lift-generation. Stream function and the velocity potential.
5 Day 1		Bernoulli and energy equations.
5	Day 2	Introduction to dimensional analysis and non-dimensionalisation.
	Day 1	Description of the Euler and Navier-Stokes equations and introduction to
6	Day 1	turbulent flows.
	Day 2	Final examination.